Explore this course:
Apply now for 2025 entry or register your interest to hear about postgraduate study and events at the University of 91̽»¨.
Biodiversity and Conservation
School of Biosciences,
Faculty of Science
Course description
This MSc course prepares you for a career protecting biodiversity in a range of natural, agricultural and urban ecosystems around the world. Throughout your course, you'll be learning about conservation issues in major ecosystems, from tropical forests to cities, and coral reefs to the deep sea, and the constraints posed by budgets, policy and legislation.
Fieldwork will form a large part of your learning. In our Field Biology module you'll gain hands-on experience of designing and conducting a project in the field, helping you to understand the challenges faced in real-world conservation projects. Our current MSc students will be completing their field course on the North Norfolk coast, one of Europe’s premier wildlife sites and a region with significant conservation challenges and varied management efforts.
You'll receive training in the principles of experimental design and data collection in an area of outstanding conservation and biodiversity interest, equipping you with the key skills to plan, manage and generate data from your own research.
Throughout your course, we’ll show you how environmental change can impact biodiversity and how the effective management of ecosystems can positively impact both biodiversity and the ecosystem itself.
You’ll also conduct an independent research project, spending three months researching an area of biodiversity or conservation that matches your interests and equips you for your future career. You could be field-based, lab-based or complete a computational data-driven project, tackling topics such as urbanisation, ecosystem services, tropical deforestation, and marine conservation.
Example previous research projects include:
- Is land sparing or land sharing farming best for conservation of biodiversity and carbon in upland UK?
- Bigger, better, more, joined: habitat fragmentation and the conservation of rare birds in the Peak District
- Traits in space and time: mobilising biodiversity data for conservation, macroecology, and macroevolution
- Investigating the abiotic and biotic factors influencing territory distribution of an avian riverine specialist
- Biodiversity change under climate and environmental variation
- Using eDNA data for biodiversity monitoring
Modules
Core modules:
- Advanced Data Handling and Analysis
-
The aim of this module is to provide students with advanced training in the use of statistical methods and computers to explore, visualise, analyse and present biological data. Advanced principles of programming for data analysis, data interpretation, statistical analysis, and graphical presentation are stressed. The course is based on the statistical programming language R, and the Integrated Development Environment RStudio. Students will study a choice of specialist modules selected to support student-specific interests and requirements. In addition, they will be guided through the process of making sense of real world, messy data, developing workflows with tidy data, deriving research questions, and ultimately preparing a data story using the simple markdown language.
15 credits - Advanced Scientific Skills
-
This module builds on existing, and further develops, generic scientific skills to equip postgraduate taught students with strong competences in presenting and reporting their research work using written and oral formats, in analysing data and the scientific literature, and in acquiring and extending their critical analysis skills. Teaching will be delivered using a blended approach with a combination of lectures, workshops, tutorials and seminars together with independent study and on-line teaching.
15 credits
Taught throughout the academic year, the module will be articulated around three units addressing:Â
Unit 1) Scientific presentation skills. In this unit, students will explore how to develop their academic (writing and oral) presentation skills. Some of the topics taught may include how to formulate a research question and hypothesis, how to find information, and how to structure a scientific essay or report. Students will learn how to communicate effectively their research to a scientific, as well as lay, audience. Emphasis will be placed on short oral communications and poster preparation and presentation. The learning objectives will be acquired through lectures, workshops, tutorials and independent study.
Unit 2) Critical analysis skills. This unit prepares students to develop their ability to analyse and appraise the scientific value of the published and unpublished literature. Workshops and lectures will introduce students to the process of critical appraisal of scientific work.Â
Unit 3) Statistics and data analysis skills. In this unit, students will learn methods to gather and analyse large datasets. In particular, workshops and lectures will teach students the basics of R coding and statistics for application in biosciences. The unit may also deliver other forms of data analysis relevant to the programme of study. Teaching within this unit will be delivered mainly through on-line material, lectures and workshops. Independent study will be essential to complete the acquisition of skills. - Field Biology
-
The broad theme of this course is to investigate the biodiversity of ecosystems and how landscapes can be sustainably managed to deliver on multiple ecosystem service goals. This residential field course will be based at a location appropriate for the study of biodiversity and conservation, for instance the coastal ecosystems along the North Norfolk Coast, UK. In a series of site visits students will learn about issues relevant to their programme, which may include the habitats, wildlife, agricultural systems, ecosystem service, and broader human context of the landscapes. They will gain experience in a range of appropriate methods for data collection, which may include collection of samples and/or analysis of samples in the field. Applying this knowledge, they will identify a research question in a group, and present this to the rest of the course. Students will develop this into a short group field project. They will then use independent research to generate and analyse data and to place it in the context of previous published work from the scientific literature. The module will develop subject-specific knowledge, as well as skills in experimental design, group working, critical thinking, and writing.
15 credits - Literature Review
-
The literature review requires the student to write a critical review of a biological topic of choice. The literature review will involve extensive reading of original research papers, reviews and books together with information extracted from other media. The student will be required to critically analyse hypotheses in the field and critically analyse the quality of the evidence used to support them. Where controversies exist the student should be prepared to indicate which side has the stronger case. The literature review should also identify gaps in our current knowledge and understanding and make suggestions for the future developments in the field.
15 credits - Individual Research Project
-
This module gives students the opportunity to develop to high level skills relevant to a career in research or management. Based on their interests and career aspirations, students will conduct either a practical laboratory or field-based research project, a computational project, a theoretical modelling project or a systematic literature review or other substantial critical review. There is the potential to work with external organisations. A common element is the independent production of a piece of research, with guidance from an academic supervisor in the department. Students will engage with their supervisor(s) and their team to shape and design their own research and conduct this largely independently with the guidance provided. Projects will be allocated to students, matching available supervisor's and student's interests. The project write-up may be targeted to a specific audience, either academics or a group of specialists, and should follow the according format in terms of structure. The student's research is further presented in an oral form to fellow students and/or academics/experts.Â
60 credits
Optional modules:
A student will take 60 credits (four modules) from this group.
- Global Conservation Issues
-
This course provides an overview of the principles of conservation biology through lectures which focus on major real-world conservation issues and specific case studies. Critical thinking is encouraged throughout as students are encouraged to understand the complexity of conservation issues behind simple narratives. Students will further develop their skills in accessing, interpreting and synthesising both the primary scientific literature and official 'grey' literature in the field of conservation, as they independently produce a policy briefing on a major conservation issue. This will also give them insights into the science-policy interface, and the skills of writing for policy makers.
15 credits - Agricultural Ecology in a Changing World
-
This unit will introduce the concept of agriculture as an ecological system and explore agriculture in the context of global change. Specifically, this unit will consider the value of biodiversity in agricultural ecosystems, the role of ecosystem services in the sustainability of food production and the vulnerabilities of agriculture to a changing climate.
15 credits - Biodiversity in Space and Time
-
Biodiversity varies enormously from place to place, from hyperdiverse systems such as tropical rainforests to more species-poor systems in polar regions. The evolution of diversity has also not occurred at a constant rate, with bursts of diversification punctuating periods of more stability. As a result, not all areas are equal, and not all species are too: some represent far more unique evolutionary history than others. This module shows how these large-scale patterns can be studied using the methods of macroecology and macroevolution, and will provide both theory and practical training in how to quantify diversity in space and time.
15 credits - Global Sustainability
-
This course examines the historical, social, cultural and political dimensions of sustainability, focusing on food production and natural resource management on the land and in the oceans. Students will learn how key historical developments led to sustainability issues, how geopolitics perpetuates these in the modern world, and how an understanding of these issues can help us to develop more sustainable ways to live in future. Learning will be achieved through lectures and videos, independent study and classroom discussion sessions.
15 credits - Research Methods in Avian Biodiversity and Conservation
-
Doing ecological field work and research requires you to study, monitor and conserve species effectively. This module is intended to get you started in developing a range of modern ecological surveys and quantitative research skills using birds as our focus. Birds are a widespread and charismatic component of the global fauna, and they play an essential role in the functioning of the world's ecosystems in a way that directly impacts human health, economy, and food production. Working alongside expert ornithologists, this module will provide students with both theoretical and practical training in a range of modern avian sampling techniques, such as specimen handling and curation, morphometrics and imaging, acoustic monitoring, live bird handling, mist netting and nest finding, geographic range mapping, and point counts. Students will emerge with a broad skills-set of practical and computational sampling techniques that can be readily deployed in a wide range of academic and applied contexts.
15 credits
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.
Open days
An open day gives you the best opportunity to hear first-hand from our current students and staff about our courses.
Duration
1 year full-time
Teaching
You’ll learn through a combination of fieldwork, computer laboratory classes, lectures, seminars and problem-solving classes.
Your independent research project will last for up to three months where you’ll be working alongside academic staff and professional scientists. This will give you first-hand experience of designing your own experiments, analysing results, problem solving and culminating in you presenting your findings to colleagues.
Assessment
Most assessment is through coursework with some written examinations. Your assessment includes, but is not limited to, essays, extended project reports, policy briefing notes, online statistics exams and oral presentations.
Your career
With first-hand experience of global conservation issues across animal and plant biodiversity, you'll be ready to pursue a range of career opportunities in policy making, research and academia implementing positive change in this area.
Previous graduates of this course are now working in roles including:
- Peatland Discovery Officer, Nottinghamshire Wildlife Trust
- Ecologist, SLR Consulting
- Associate Programme Officer, United Nations EP-WCMC
- Field Biologist, Atlantic Marine Conservation Society
- Higher Scientific Officer, Animal and Plant Health Agency
- Seasonal Assistant Ecologist, MAB Environment and Ecology Ltd
- Consultant, Natural Capital Solutions
If you choose to continue your research training, you'll be well equipped to pursue a PhD in topics such as ecology, evolution and conservation and beyond. Alumni are currently studying for PhDs and researching topics including Agroecology, the Impacts of Pesticides on Aquatic Plants, Biodiversity of the Marine Benthos, and the Environmental Impact of non-native species.
School
School of Biosciences
The School of Biosciences brings together more than 100 years of teaching and research expertise across the breadth of biology.
We're home to over 120 lecturers who are actively involved in research at the cutting edge of their field, sharing their knowledge with more than 1,500 undergraduate and 300 postgraduate students.
We carry out world-leading research to address the most important global challenges such as food security, disease, health and medicine, ageing, energy, and the biodiversity and climate crises. This has led to us being ranked top 5 in the UK for the quality of our research for over 20 years (Research Excellence Framework 2021, 2014 and the Research Assessment Exercise 2001).
Our expertise spans the breadth and depth of bioscience, including molecular and cell biology, genetics, development, human physiology and pharmacology through to evolution, ecology, biodiversity conservation and sustainability. This makes us one of the broadest and largest groupings of the discipline and allows us to train the next generation of biologists in the latest research techniques and discoveries.
Entry requirements
Minimum 2:2 undergraduate honours degree in a relevant subject with relevant modules.
Subject requirements
We accept degrees in the following subject areas:
- Agriculture
- Animal Science
- Biology
- Botany
- Conservation
- Ecology
- Environmental Management
- Fisheries
- Forestry
- Marine Biology
- Natural Sciences
- Zoology
Module requirements
You should have studied at least one module from the following areas:
- Biodiversity
- Biology
- Botany
- Conservation
- Ecology
- Evolution
- Genetics
- Plant Science
- Zoology
English language requirements
IELTS 6.5 (with 6 in each component) or University equivalent
If you have any questions about entry requirements, please contact the school/department.
Fees and funding
Alumni discount
Save up to £2,500 on your course fees
Are you a 91̽»¨ graduate? You could save up to £2,500 on your postgraduate taught course fees, subject to eligibility.
Apply
You can apply now using our Postgraduate Online Application Form. It's a quick and easy process.
Contact
study@sheffield.ac.uk
+44 114 222 2341
Any supervisors and research areas listed are indicative and may change before the start of the course.
Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read and the .